Annotary
Sort
Vamos a morir todos

Vamos a morir todos

cuentos-cuanticos.com
astronomía, universo, principio antrópico, diseño inteligente, energía oscura, big rip

Cuando me hablan del diseño inteligente dando como “prueba” lo bien ajustadito que está todo para que nosotros podamos vivir en el universo, me da un poco de ternura. Sin duda el universo permite la vida en él, a las pruebas me remito, pero tampoco está fuera de ninguna duda que el universo es un sitio inhóspito y hostil para la vida. Todos los que propugnan lo bien diseñado que está el universo para permitir vida superior en él deberían seguir leyendo las instrucciones, porque amigos, el universo es una fabulosa máquina de matar.

En esta entrada hablaremos del fin del universo. Con las evidencia actuales sobre la constitución del mismo y sabiendo que su dinámica está dominada por una energía (oscura) que provoca la expansión, cada vez más acelerada, del mismo, podemos aventurar qué pasará en los próximos miles de millones de años.

Cancel

El principio antrópico de mi barrio

Antes de empezar a meternos en harina, hablemos un poco del principio antrópico.

El principio antrópico reza tal que así:

Las cosas son como son, en espacio y tiempo, de tal forma que la vida es posible y la inteligencia, aunque más difícil de encontrar, también.

Cuando leo un principio antrópico, que hay varios, mi cerebro en realidad lee:

Bla blabla blabla, bla blabla bla bla blabla blabla bla bla blablabla, blabla, blablablá, blablablablabla, blabla, blabla, blabla bla blabla bla.

Cancel
Show all 2 highlights
Sort
Colossal Asteroid Impact 3.3 Billion Years Ago --"Dwarfed the Dinosaur-Extinction Event"

Colossal Asteroid Impact 3.3 Billion Years Ago --"Dwarfed the Dinosaur-Extinction Event"

www.dailygalaxy.com
asteroide, astronomía, extinción, dinosaurios

“We knew it was big, but we didn’t know how big,” Donald Lowe, a geologist at Stanford University said.

A massive asteroid almost as wide as Rhode Island and about three to five times larger than the rock thought to have wiped out the dinosaurs slams into Earth. The collision punches a crater into the planet’s crust that’s nearly 500 kilometers (about 300 miles) across: greater than the distance from Washington, D.C. to New York City, and up to two and a half times larger in diameter than the hole formed by the dinosaur-killing asteroid 65 million years ago. Seismic waves bigger than any recorded earthquakes shook the planet for about half an hour at any one location – about six times longer than the huge earthquake that struck Japan three years ago. The impact also sets off tsunamis many times deeper than the one that followed the Japanese quake.

Although scientists had previously hypothesized enormous ancient impacts, much greater than the one that may have eliminated the dinosaurs, now a new study reveals the power and scale of a cataclysmic event some 3.26 billion years ago which is thought to have created geological features found in a South African region known as the Barberton greenstone belt. The research has been accepted for publication in Geochemistry, Geophysics, Geosystems, a journal of the American Geophysical Union.

Cancel

The huge impactor – between 37 and 58 kilometers (23 to 36 miles) wide – collided with the planet at 20 kilometers per second (12 miles per second). The jolt, bigger than a 10.8 magnitude earthquake, propelled seismic waves hundreds of kilometers through the Earth, breaking rocks and setting off other large earthquakes. Tsunamis thousands of meters deep – far bigger than recent tsunamis generated by earthquakes — swept across the oceans that covered most of the Earth at that time.

A graphical representation of the size of the asteroid thought to have killed the dinosaurs, and the crater it created, compared to an asteroid thought to have hit the Earth 3.26 billion years ago and the size of the crater it may have generated. A new study reveals the power and scale of the event some 3.26 billion years ago which scientists think created geological features found in a South African region known as the Barberton greenstone belt.

A graphical representation of the size of the asteroid thought to have killed the dinosaurs, and the crater it created, compared to an asteroid thought to have hit the Earth 3.26 billion years ago and the size of the crater it may have generated. A new study reveals the power and scale of the event some 3.26 billion years ago which scientists think created geological features found in a South African region known as the Barberton greenstone belt

Cancel
Show all 2 highlights
Sort
Strange Quark Stars --Does One Actually Exist in a Nearby Supernova?

Strange Quark Stars --Does One Actually Exist in a Nearby Supernova?

www.dailygalaxy.com
astronomía, estrellas, estrellas extrañas, quarks

"We haven't found strange stars yet," explains Prashanth Jaikumar at the Argonne National Laboratory. "But that doesn't mean they don't exist. Maybe we have found them. Maybe some of these neutron stars are really strange stars. According to our theory, it would be very difficult to tell a strange star from a neutron star."

Research suggests that neutron stars may gradually transform into 'strange' stars - i.e. in stars made up primarily from the 'strange' quark. The conventional wisdom is that the electric field of a such a hypothetical strange star (made up from strange matter) at its surface would be so huge and its luminosity so big that it would be impossible to confuse it with anything else.

One of the most interesting aspects of neutron stars is that they are not gaseous like usual stars, but they are so closely packed that they are liquid. Strange stars should also be liquid with a surface that is solid.

However, Jaikumar and his colleagues challenge that. Strange stars are usually assumed to exhibit huge electric fields on their surface precisely because they are assumed to have a smooth surface. But according to the scientists neither neutron stars nor strange stars have such a smooth solid-like surface.

"It's like taking water," Jaikumar says, "with a flat surface. Add detergent and it reduces surface tension, allowing bubbles to form. In a strange star, the bubbles are made of strange quark matter, and float in a sea of electrons. Consequently, the star's surface may be crusty, not smooth. The effect of surface tension had been overlooked before."

Cancel
Sort
A Thermal Planetary Habitability Classification for Exoplanets - Planetary Habitability Laboratory @ UPR Arecibo

A Thermal Planetary Habitability Classification for Exoplanets - Planetary Habitability Laboratory @ UPR Arecibo

phl.upr.edu
astronomía, exoplanetas, clasificación, temperaturas
Current and future observations by ground and orbital missions will be able to identify habitable exoplanets. As a first assessment, the surface temperature of Earth-like exoplanets is used as a proxy for habitability. Surface temperature is indirectly determined by the exoplanet's distance to the parent star together with the star's luminosity within the stellar habitable zone. So far, this is the easiest method to assess the potential for life of exoplanets and future observations will be needed for better assessments that include directly planetary temperatures measures together with atmospheric composition. However, not all habitable exoplanets are expected to be equally habitable. Even Earth's habitability changed through time and any habitable exoplanet could be in any stage.

    The number of habitable exoplanets that will be detected by current (i.e. Kepler) and future missions (i.e. TPF) will require some way of classification. There are many ways to do this (i.e. Earth Similarity Index) but here we are focusing in constructing the simplest formulation, one based on temperature alone but restricted to terrestrial exoplanets with abundant water in their surface. Their terrestrial nature can be inferred by their size and density. Unfortunately, we need to assume that water, as a very abundant substance in the universe, is also present in necessary quantities for life (i.e. lakes or oceans) as we don't still have the capability for such observations, at least for terrestrial exoplanets
Cancel
It is interesting to note that there are no planetary habitability classifications schemes, at least in the scientific community. Only in the Star Trek sci-fi universe there is a planetary classification where Earth-like planets are classified as Class M Planets. Although appealing, this classification mix habitability, geological evolution,and atmospheric properties in a complex and unorganized way not suitable for exoplanets studies. There is also the less known Sudarsky's thermal classification of giant exoplanets but not one for habitable exoplanets. The field of exoplanetology is still growing and there was no need for a habitability classification before as Earth is the only habitable "item," so far.

    To develop a planetary habitability classification based on temperature we need to consider our understanding of the thermal requirements of life in general. Microbial life such as bacteria and archaea has a wide thermal tolerance and growth has been measured at temperatures from -15°C to 121°C. Macrobial life like animals (metazoa) show a more restrictive tolerance usually between 0°C to 50°C. This is also true for most microbial (i.e. cyanobacteria) and macrobial (i.e. plants) primary producers, which generate most of the energy for consumers in the trophic scale. Most plants are particularly efficient at temperatures close to 25°C. Water is liquid between 0°C to 100°C at standard atmospheric pressures but is also known to stay liquid down to near -50°C in supercooled states or in combination with antifreeze agents (i.e. salts). Therefore, and for simplicity of the classification, it is practical to divide the thermal tolerance of life in bins of 50°C around the freezing point of water.
Cancel
Show all 2 highlights
Sort
Extinct Galaxy Observed Orbiting Milky Way --"A Fossil of the Early Universe"

Extinct Galaxy Observed Orbiting Milky Way --"A Fossil of the Early Universe"

www.dailygalaxy.com
astronomía, galaxia extinta, fósil, Vía Láctea

Thirteen billion years ago our universe was dark. There were neither stars nor galaxies; there was only hydrogen gas left over after the Big Bang. This early universe was hot and ionized. But as the universe expanded, it cooled, and 380,000 years after the Big Bang, protons joined electrons to make neutral hydrogen atoms, which block light. As stars and galaxies evolved whose radiation ionized the universe anew, allowing light to speed through space unimpeded. Eventually that mysterious time came to an end as the first stars ignited and their radiation transformed the nearby gas atoms into ions. This phase of the universe's history is called the Epoch of Reionization (EoR), and is linked to many fundamental unanswered questions in cosmology.

A tiny galaxy orbiting the Milky Way, Segue 1, may be a fossil left over from this early universe, according to researchers led by Anna Frebel of the Massachusetts Institute of Technology who collected detailed information on the elemental composition of six of the brightest of Segue 1’s stars using the Las Campanas Observatory’s Magellan Telescopes in Chile and the Keck Observatory in Hawaii.
Cancel

The measurements, reported in a paper accepted for The Astrophysical Journal, revealed that these stars are made almost entirely of hydrogen and helium, and contain just trace amounts of heavier elements such as iron. No other galaxy studied holds so few heavy elements, making Segue 1 the “least chemically evolved galaxy known,” implying that it may have stopped evolving almost 13 billion years ago.

“Segue 1 is so ridiculously metal-poor that we suspect at least a couple of the stars are direct descendants of the first stars ever to blow up in the universe,” says study co-author Evan Kirby of the University of California, Irvine. “Segue 1 is the only example that we know of now that was never enriched by these low-mass stars, meaning it formed stars really quickly, in the blink of an eye,” Kirby added. “If it had formed stars long enough those low-mass stars would have to contribute.”

“The big question is, why did it stop?” says U.C. Irvine astrophysicist James Bullock, who was not involved in the study. “A galaxy like this should have been able to make a million more stars, but it didn’t.”

Cancel
Show all 2 highlights
Sort
Mystery Signal from Center of Milky Way --Does It Come from Dark Matter Sources?

Mystery Signal from Center of Milky Way --Does It Come from Dark Matter Sources?

www.dailygalaxy.com
Vía Láctea, astronomía, materia oscura

ur galactic center teems with gamma-ray sources, from interacting binary systems and isolated pulsars to supernova remnants and particles colliding with interstellar gas. It's also where astronomers expect to find the galaxy's highest density of dark matter, which only affects normal matter and radiation through its gravity. Large amounts of dark matter attract normal matter, forming a foundation upon which visible structures, like galaxies, are built.

No one knows the true nature of dark matter, but WIMPs, or Weakly Interacting Massive Particles, represent a leading class of candidates. Theorists have envisioned a wide range of WIMP types, some of which may either mutually annihilate or produce an intermediate, quickly decaying particle when they collide. Both of these pathways end with the production of gamma rays -- the most energetic form of light -- at energies within the detection range of Fermi's Large Area Telescope (LAT).

When astronomers carefully subtract all known gamma-ray sources from LAT observations of the galactic center, a patch of leftover emission remains. This excess appears most prominent at energies between 1 and 3 billion electron volts (GeV) -- roughly a billion times greater than that of visible light -- and extends outward at least 5,000 light-years from the galactic center.

Cancel
Sort
Comets

Comets

skywiseunlimited.com
cometas, astronomía

Comets are essentially big dirty snowballs, the kind you throw at someone you really don’t like. They are mostly made of muddy stinky ice, and bits of dust and little rocks.

Comets are about the size of cities and towns, sort of like frozen lakes in space. We’ve had a few that were the size of big cities like L.A. and one that was even bigger. But the majority are Smallvilles. Some are mere villages, neighborhoods.

I’m guessing there are at least a billion comets way out there in the far reaches of the solar system, maybe a couple billion, in a region known as the Oort Cloud. The cloud is basically a swarm of the dirty little buggers surrounding all the planets and they are just orbiting around the Sun way out there where it’s dark and cold. Some people say the cloud is a light year across. Some say more. Some say less. Whatever. People say a lot of things.

Cancel
Sort
Aurora

Aurora

skywiseunlimited.com
auroras boreales, sol, astronomía

Aurora is a pretty thing, a real pretty thing.

If you haven’t seen it, and want to, I’ll tell you how. Call your local astronomy club. Those geeks will go on and on about it, and put you on a list to be called if someone sees it happening. You have to agree to receive the call at anytime of night because this stuff is very unpredictable and may only last half an hour or so. Once you’ve had your fill, remember to get them to take your name off the list. Also remember to tell them what an awesome big microscope they have. Then, hmmm let’s see, what else… ask how far it can see, and if they have ever seen a UFO, and why none of the Big Dipper stars ever “shoot.”

Cancel
Auroral activity strongly correlates with solar activity which peaks on an 11-year cycle. The story begins with the solar surface which continuously emits tiny charged particles such as protons and electrons. These particles are collectively known as the solar wind. The particles race through the solar system at 400 km/sec (about a million freakin’ miles per hour). They smash into the Earth’s magnetic field and are then suddenly off-ramped along the lines of magnetic force towards the Earth’s poles.
Cancel
Show all 2 highlights
Sort
The Emergence of Life on Wet, Rocky Sunlit Planets --NASA JPL Science

The Emergence of Life on Wet, Rocky Sunlit Planets --NASA JPL Science

www.dailygalaxy.com
astronomía, planetas, origen vida


NASA's Michael Russell, a group supervisor at the Jet Propulsion Laboratory at CalTech, specializes in the emergence of life and oxygenic photosynthesis in the context of hydrothermal systems on wet, rocky, sunlit planets. Specifically he has suggested that a major geological process, the cooling by seawater of rocks under the floor of the ocean, played an important role in the origin of life. A process that might seem remote from our everyday knowledge of life but it has now been known for more than twenty years that genetically primitive micro-organisms are to be found living at warm springs on the ocean floor.

The challenge of his research was to explain how a relatively simple 'living' organism similar to a single bacterial cell could form, function and reproduce.

A 'living' cell assimilates nutrients, uses energy and generates waste. It consists mainly of carbon-based (i.e. 'organic') molecules that also contain hydrogen and other elements. The defining structural feature is a mainly waterproof container, the cell membrane. Inside is a watery solution with a high concentration of organic molecules as well as some inorganic salts.

A simple living cell need not have a nucleus of concentrated genetic material, DNA, but it does require the presence of this large molecule.DNA consists of two molecular chains, long sequences of simpler molecules, that can detach from each other like an unzipping action, each chain then becoming a template for the assembly of a new chain.

Cancel

DNA can therefore reproduce itself. The molecular sequence of DNA controls the systematic construction of all the organic components of the cell most of which are 'renewable', that is, they degrade and the molecular building blocks are recycled.

A living cell therefore recycles organic molecules as well as producing and accumulating them. It is therefore rejuvenating, a remarkable property that gives single cells longevity. Cells can grow in size and reproduce, for example by splitting in half, each daughter cell carrying a copy of the original cell's DNA

There have been many changes in the structure of cells through time as life has evolved within the constraints of DNA control, but the changes are probably small in comparison to the first step from naturally produced chemicals to the first living cell. We suggest that the earliest cells functioned in a similar way to present day cells so all the main components and mechanisms had to come together at the same time in the same place.

This leads to the question of what life 'does' rather than what life 'is', and to tackle this question we need to understand natural sources of energy and what forms of energy are involved in life processes. Consideration of other natural phenomena in relation to energy can help us understand life and its initial requirements:

Cancel
Show all 2 highlights
Sort
Mercury's Volcanic Activity Lasted Billions of Years --A Surprising New Finding

Mercury's Volcanic Activity Lasted Billions of Years --A Surprising New Finding

www.dailygalaxy.com
astronomía, geología, volcanes, mercurio

Mercury is the last of the classical planets, the planets known to the astronomers of Egypt and Greece and Rome and the Far East. It’s an object that has captivated the imagination and the attention of astronomers for millennia. Mercury has always been a bit of an oddball as the only planet in the Solar System that does not follow a basically circular orbit. 

The surface of Mercury crackled with volcanic explosions for extended periods of the planet’s history, according to a new analysis led by researchers at Brown University. The findings are surprising considering Mercury wasn’t supposed to have explosive volcanism in the first place, and they could have implications for understanding how Mercury formed. “Together with other results that suggest the Moon may have had more volatiles than previously thought, this research is revolutionizing our thinking about the early history of the planets and satellites,” said Jim Head, professor of geological sciences and a MESSENGER mission co-investigator. “These results define specific targets for future exploration of Mercury by orbiting and landed spacecraft.”

On Earth, volcanic explosions like the one that tore the lid off Mount St. Helens happen because our planet’s interior is rich in volatiles — water, carbon dioxide and other compounds with relatively low boiling points. As lava rises from the depths toward the surface, volatiles dissolved within it change phase from liquid to gas, expanding in the process. The pressure of that expansion can cause the crust above to burst like an overinflated balloon.

Cancel

Mercury, however, was long thought to be bone dry when it comes to volatiles, and without volatiles there can’t be explosive volcanism. But that view started to change in 2008, after NASA’s MESSENGER spacecraft made its first flybys of Mercury. Those glimpses of the surface revealed deposits of pyroclastic ash — the telltale signs of volcanic explosions — peppering the planet’s surface. It was a clue that at some point in its history Mercury’s interior wasn’t as bereft of volatiles as had been assumed.

What wasn’t clear from those initial flybys was the timeframe over which those explosions occurred. Did Mercury’s volatiles escape in a flurry of explosions early in the planet’s history or has Mercury held on to its volatiles over a much longer period? This latest work, available in online early view at the Journal of Geophysical Research: Planets, suggests the latter.

A team of researchers led by Tim Goudge, a graduate student in the Department of Geological Sciences at Brown, looked at 51 pyroclastic sites distributed across Mercury’s surface. They used data from MESSENGER’s cameras and spectrometers collected after the spacecraft entered orbit around Mercury in 2011. Compared with the data from the initial flybys, the orbital data provided a much more detailed view of the deposits and the source vents that spat them out.

Cancel
Show all 2 highlights
Sort
Encontrar vida en otros planetas se hace un poco más complicado

Encontrar vida en otros planetas se hace un poco más complicado

vozpopuli.com
exoplanetas, vida, aerosoles orgánico, astronomía
Un equipo de investigadores encabezado por Mikael Ehn, del Instituto de Investigación de la Energía y el Clima (Alemania), publica en Nature el descubrimiento de la fuente de las partículas de aerosol naturales que juegan un papel tan importante en la formación de nubes. La investigación pone de manifiesto cómo la vida en la Tierra puede influir en la producción de partículas que influyen en el clima del planeta. Los resultados podrían tener sus implicaciones para la detección de exoplanetas con vida.
Cancel

Estas partículas se conocen como aerosoles orgánicos climáticamente activos y son vapores de moléculas grandes que contienen carbono, oxígeno e hidrógeno en proporciones casi idénticas. Los investigadores han descubierto que se forman poco después de la liberación de compuestos orgánicos volátiles por parte de las plantas, especialmente de los bosques. Los vapores se condensan en pequeñas partículas haciendo que éstas se hagan cada vez mayores. Finalmente alcanzan un tamaño suficiente para causar cambios notables en la atmósfera: reflejan la luz solar y actúan como núcleos para la formación de nubes.

Este resultado es útil para los astrobiólogos que estudian la interacción entre la biosfera de la Tierra y su clima y en cómo el cambio climático afectará a la habitabilidad futura del planeta. Pero también podría tener sus consecuencias para el estudio comparado de planetas y la búsqueda de vida en ellos.

Como muestra este estudio, la vida en la Tierra puede tener un efecto detectable aparte de en la composición (presencia de oxígeno molecular) en el comportamiento de la atmósfera del planeta. Hoy día hay más de 1.000 exoplanetas identificados y el número sigue creciendo. Dentro de las técnicas que se están desarrollando para el estudio de las atmósferas de estos planetas es muy interesante contar con firmas biológicas que identificarían la presencia de vida extraterrestre.

Cancel
Show all 2 highlights
Sort
Tiny Worlds at Edge of Our Solar System May Hold Clues to Origins of Life

Tiny Worlds at Edge of Our Solar System May Hold Clues to Origins of Life

www.dailygalaxy.com
astronomía, sistema solar, origen de la vida

Mapping tiny worlds at the Solar System's edge could one day show scientists how life arose on Earth. That's because many of these objects could contain organics, carbon-based material that are ingredients for life. On March 26, researchers announced the discovery of 2012 VP133, an estimated 280-mile wide (450-kilometer) object that lies just beyond the Kuiper Belt of icy objects that swarm outside of Neptune's orbit.

The new object is one of only two dwarf planets discovered beyond the Kuiper Belt, with Sedna (a decade ago) being the other one. The paper, "A Sedna-like body with a perihelion of 80 astronomical units," was published in the journal Nature. 

As the scientists continue their search, they expect that 2012 VP133 will be the first of a series of discoveries of such objects. Finding such a world has a value of its own, but the team is also thinking of a greater astrobiological question as they study 2012 VP133. Are the possible organics —which show up as ultra-red material in telescopes — a possible source for life on Earth? And could be this be true of other planetary systems as well?

Cancel

"One of the questions I've had is trying to map out what is this ultra-red material in the Kuiper Belt," said Scott Sheppard, a faculty member at the Carnegie Institution for Science, Department of Terrestrial Magnetism (DTM) in Washington, D.C. Sheppard co-discovered the object along with the Gemini Observatory's Chadwick Trujillo.

 

Cancel
Show all 2 highlights
Sort
Blog Sin Dioses: Cosmos, la nube de Oort y los creacionistas

Blog Sin Dioses: Cosmos, la nube de Oort y los creacionistas

blog-sin-dioses.blogspot.fr
Cosmos, creacionistas, nube de Oort, cometas, Neil deGrasse Tyson
El tercer capítulo de la serie Cosmos trató sobre los cometas. De la manera como estos objetos celestes asustaron a muchos en el pasado al no saber lo que realmente eran. Cuando la superstición ocupaba el lugar de la ciencia el avistamiento de un comenta era un desastre, palabra que literalmente significa "mala estrella".

El capítulo prosiguió con la historia de Edmond Halley e Isaac Newton y las desavenencias de este último con Robert Hook. Para muchos, la naturaleza humana de un Newton ermitaño y malgeniado fruto de su abandono afectivo cuando niño, resultó ser una noticia novedosa. Para otros, el genio de Edmond Halley, así como su paciente persuasión a Newton fueron claves para el avance de la ciencia. En definitiva, un capítulo bello, como los anteriores.
Cancel
Los dos primeros capítulos de la exitosa serie molestaron profundamente a los creacionistas, cosa que para muchos, no ocurrió en el tercer capítulo. Pero no fue así. La molestia religiosa se volvió a presentar. Tres callos se pisaron en el tercer capítulo y uno faltó por pisar.
Cancel
Show all 2 highlights
Sort
La historia más grande jamás contada - Naukas

La historia más grande jamás contada - Naukas

naukas.com
astronomía, historia, universo

Quizás el título de este artículo nos lleve a la equivocada idea de que vamos a tratar sobre temas propios de estos tiempos de torrijas. Sin embargo, en esta ocasión vamos a hablar de una historia real, una historia con pruebas y una historia que nos involucra a todos de una forma determinante. Sí amigos, vamos a hablar sobre el universo.

Y como alguien dijo, – Más vale una imagen que mil palabras – aquí tenemos la foto que prueba que todo lo que vamos a decir es cierto.

Cancel

Esta es una famosa foto deliciosamente desconocida. Ha aparecido en multitud de medios de comunicación pero, ¿qué diablos significa? ¿por qué se excita tanto la gente, y en especial los científicos, con esta imagen de puntitos de colores?

El objetivo de este escrito no es el de hacernos expertos en cosmología tras unas cuantas líneas, el objetivo no es otro que el de conseguir que cada vez que veamos esa imagen nos estremezcamos ante el atrevimiento de minúscula parte del universo, nosotros, que se ha empeñado en entenderlo todo y que lo está consiguiendo poco a poco. Así que el propósito de hoy es el de desentrañar la información encerrada en esa imagen.

Lo que sabemos del universo

Hagamos una lista de las cosas que sabemos de nuestro universo y luego las iremos relacionando con la foto esa de los puntitos de colores.

Cancel
Show all 2 highlights
Sort

Bios: Jocelyn Bell Burnell

esceptica.org
astronomía, cuásares,Jocelyn Bell Burnell, biografía
Jocelyn Bell Burnell
Cancel

ocelyn Bell nación en Belfast, Irlanda del Norte en 1943, en el seno de una familia cuáquera. Su padre, arquitecto de profesión, había participado en el diseño del observatorio Armagh y traía a casa libros de astronomía. Jocelyn estuvo expuesta a esos libros y desde muy joven decidió que, de ser posible, estudiaría astronomía.

Los obstáculos empezaron pronto, cuando en su primera semana de clases en la escuela secundaria, se dieron instrucciones de que las chicas debían dirigirse al aula de “ciencias domésticas” y los chicos al laboratorio de ciencias. Los padres de Jocelyn, junto con los padres de otras chicas, montaron en cólera y a partir de entonces al laboratorio de ciencias asistieron todos los chicos, Jocelyn y dos chicas más. Más tarde sería enviada a un internado cuáquero en York, donde tuvo la suerte de encontrar un buen profesor de física que la motivó a investigar por su cuenta.

En la Universidad de Glasgow, Jocelyn estudió Filosofía Natural (Física). Era la única mujer entre los 50 alumnos de su clase y eso la hacía sentirse incómoda. Por aquella época, era tradición en la Universidad Glasgow que cada vez que una mujer entraba a un aula, todos los chicos silbaran y golpearan el suelo con los pies. A Jocelyn le parecía particularmente irritante que los profesores y empleados de la universidad no hicieran nada al respecto.

Cancel
Show all 2 highlights
Sort
Asteroids

Asteroids

skywiseunlimited.com
asteroides, astronomía

The majority of asteroids are just silly little rocky bits of junk between the orbits of Mars and Jupiter, the crumbs that fell from the plate as those planets were served up on the solar dinner table. This crumby region is known as the Asteroid Belt.
[insert suspender joke]

There are other tribes of asteroids gathered here and there. For instance there is a gaggle of them both 60 degrees ahead of, and 60 degrees behind Jupiter in its orbit. These are called Trojan asteroids because they are always horsing around. Another two groups live ahead of and behind Mars. They are called Martian Trojans. There are plenty of other gangs elsewhere in the solar system, including inside Earth’s orbit of the Sun. Some of the creepy little critters, like Cruithne, have very odd orbits indeed. I think you’ll like Cruithne. More about him in a moment.

Cancel
Most asteroids are the size of gravel, mere cosmic specks, but at least 16 asteroids have a diameter of 240 km or more. You don’t want to get hit by something like that. Ceres is the big boss. He has a diameter of about about 914 km which is roughly the size of Texas. The surface of Ceres reminds me of parts of Texas. If Ceres hits Earth, I hope it hits Texas.
Cancel
Show all 2 highlights
Sort
La expansión del Universo, ¿Y, nuestro futuro? : Blog de Emilio Silvera V.

La expansión del Universo, ¿Y, nuestro futuro? : Blog de Emilio Silvera V.

www.emiliosilveravazquez.com
universo, futuro, astronomía

Si como parece la expansión del Universo se acelera, entonces el procesamiento de información debería desaparecer con el tiempo y cada vez sería menor y más difícil nuestro aceeso para poder saber lo que pasa en regiones tan lejanas en las que se encontrarían las galaxias mientras que los espacios vacíos se hacían más y más grandes cada vez. Algunos grupos de parecen haber comprobado que la expansion del Universo empezó a acelerarse hace sólo algunos pocos miles de millones de años. Pero, supongamos que las pruebas observacionales a favor de la aceleración resultaran ser incorrectas. ¿Qué pasaría entonces?

Cancel

Alguna podríamos estar tentados de preguntar: ¿En qué lugar exactamente ocurrió el Big Bang?, es decir, ¿Cuál es el centro del Universo? Y, al ser la expansión isotrópica y estar el universo expandiéndose en todas las direcciones, no parece que la pueda tener respuesta. En cualquier lugar en el que nos podamos situar veremos siempre lo mismo, ¡el Universo se expande!

Lo más probable y según los conocimientos que hoy tenemos, lo que parece es que el universo se expandirá para siempre y, en esa diatriba  cuesta arriba está inmersa la vida que no quiere desaparecer y se enfrenta, en una batalla , a unos hechos que parecen irreversibles.

La vida necesita diferencias de temperatura, o de densidad, o de expansión en el Universo de las que pueda extraer energía útil haciéndolas uniformes. Si se baza en recursos minerales de energía que existen localmente -estrellas muertas, agujeros negros que se evaporan, partículas elementales que se desintegran-, entonces con el tiempo se encara al problema al que se enfrentan inevitablemente los yacimientos muy explotados: cuesta más extraer los minerales de lo que pueda ganarse con ello.

Cancel
Show all 2 highlights
Sort
History of Astronomy Part 2

History of Astronomy Part 2

skywiseunlimited.com
astronomía, historia, Hubble, Einstein, Halley
Edmund Halley 1656-1742
Among his many studies are tides, magnetism, and trade winds. He cataloged 341 southern hemisphere stars and discovered a star cluster in Centaurus. He also made the first complete observation of a transit of Mercury on November 7, 1677. He also invented the diving bell. But his most famous accomplishment is that he worked out a theory of the orbits of comets, concluding that the comet of 1682 was periodic, and that it would return every 76 years. Halley had died by the time the comet returned so his whole life was pretty much totally wasted, but the success of the prediction greatly elevated the level of confidence people had in the horrible terrifying power of science. Even so, Americans never learned how to pronounce his name correctly.
Cancel
Charles Messier 1730 – 1817
Chuck Messier was one comet-hunting sonuva bitch. He found a lot of comets but then he decided to catalog the location of many deepsky objects that could easily be mistaken for comets in small telescopes. At first he was annoyed by all the small fuzzy things that look like comets but later he began to realize that these were the real “who’s who” of stuff to show the chicks with your telescope. His list contains a few more than 100 diffuse objects. The actual number is controversial because of problems with identifying certain objects. M40 may not exist at all, or at best is two stupid dim stars. Or maybe there was a wad of horse hair on his lens. Meanwhile M102 appears to be a duplicate entry of M101. That happens. Eventually he found out that you shouldn’t call women “chicks” because babes hate that. Also, powdered wigs went out of style and never made a come back.
Cancel
Show all 2 highlights
Sort
"Quantum Vacuum 'Powers' the Dark Energy Driving Our Universe"

"Quantum Vacuum 'Powers' the Dark Energy Driving Our Universe"

www.dailygalaxy.com
astronomía, vacío cuántico, energía os
cura, física, quintaesencia

Cosmologists believe that some three quarters of the universe are made up of a mysterious dark energy which would explain its accelerated expansion. The truth is that they do not know what it could be, therefore they put forward possible solutions. One is the existence of quintessence, an invisible gravitating agent that instead of attracting, repels and accelerates the expansion of the cosmos. From the Classical World until the Middle Ages, this term has referred to the ether or fifth element of nature, together with earth, fire, water and air. Another possibility is the presence of an energy or phantom field whose density increases with time, causing an exponential cosmic acceleration. This would reach such speed that it could break the nuclear forces in the atoms and end the universe in some 20,000 million years, in what is called the Big Rip.

Now researchers from Barcelona and Athens suggest that both possibilities are only a mirage in the observations and it is the quantum vacuum which could be behind this energy that moves our universe. The experimental data that underlie these two hypotheses comes from satellites such as Planck of the European Space Agency (ESA) and Wilkinson Microwave Anisotropy Probe (WMAP) of NASA. Observations from the two probes are essential for solving the so-called equation of the state of dark energy, a characterising mathematical formula, the same as that possessed by solid, liquid and gaseous states.
Cancel
Sort
El Tercer Precog: ¿Sería posible modificar la inclinación del eje de rotación de la Tierra? (2ª parte)

El Tercer Precog: ¿Sería posible modificar la inclinación del eje de rotación de la Tierra? (2ª parte)

eltercerprecog.blogspot.com.es
física, astronomía, eje rotación Tierra, Julio Verne

En la entrada anterior habíamos dejado a nuestros intrépidos miembros del Gun Club cegados por la avaricia, intentando enriquecerse a partir del carbón oculto por la capa de hielo polar. Para ello se habían propuesto nada menos que disparar un enorme proyectil mediante un cañón descomunal cuyo retroceso provocase que nuestro planeta se pusiese a rotar alrededor de un nuevo eje, desplazado un ángulo de 23º 27’ respecto al antiguo, de tal forma que las estaciones del año desapareciesen y, consecuentemente, el casquete ártico se fundiese haciendo mucho más fácil la extracción del negro mineral.

Sigamos, pues, a partir de este punto. Leed con atención y enseguida aprenderéis una lección muy importante que podréis contar a vuestros amigos, hijos y demás parientes para que nunca jamás se vuelva a repetir un suceso tal.

Es de imaginar que con la intriga generada ayer, ya os habrá dado tiempo sobrado de leer la novela del insigne Jules Verne. Así pues, no provocaré suicidio en masa alguno si en esta entrada os desvelo los secretos que en ella se relatan. Me permitiréis, además, que os vaya contando de forma simultánea ciertos conceptos y leyes físicas que, por otro lado, se hacen imprescindibles para un correcto entendimiento de semejante aventura.
Cancel
Bien, comenzaré por el principio. Antes de emprender el viaje hacia el lugar exacto del lanzamiento, con la inestimable contribución económica a la expedición por parte de la señorita Scorbitt, Barbicane y Nicholl tuvieron que ser convencidos de la viabilidad del proyecto. Para ello, J.T. Maston, un calculista destacado, había estudiado concienzudamente el problema, llegando a las conclusiones que aquí debajo paso a exponer de una forma espectacularmente amena.

Lo primero que hay que hacer es imaginar el esferoide terrestre como una inmensa bola de billar que gira alrededor del eje polar en el sentido oeste-este. Si esta bola fuese golpeada por un enorme taco en una dirección que no pasase por su centro, le provocaría dos efectos distintos: por un lado, un movimiento de traslación en la misma dirección en la que fue golpeada y, por otro, un movimiento de rotación alrededor de un eje perpendicular al plano que definen el centro de la esfera y la dirección del golpe. La superposición de ambos giros (el original y éste último) es la que da origen al nuevo eje de rotación. Cualquier persona que haya jugado alguna vez al billar ha tenido una experiencia de dichos movimientos.
Cancel
Show all 2 highlights
Sort
El Tercer Precog: ¿Sería posible modificar la inclinación del eje de rotación de la Tierra? (1ª parte)

El Tercer Precog: ¿Sería posible modificar la inclinación del eje de rotación de la Tierra? (1ª parte)

eltercerprecog.blogspot.com.es
astronomía, eje de la Tierra, Julio Verne

Un grupo de, al parecer, chalados, ocultos bajo el nombre de una compañía que se hace llamar la North Polar Practical Association, adquiere en pública subasta las tierras ocupadas por el Polo Norte comprendidas dentro del paralelo 84. A doscientos centavos la milla cuadrada hacen un total de 814.000 dólares de la época. Una auténtica ganga. En el título de propiedad se puede leer una enigmática cláusula que afirma que el contrato no perderá su validez incluso aunque se produzcan cambios en las condiciones geográficas o meteorológicas del globo terrestre.

¿Quiénes son los miembros de semejante compañía? ¿Qué pretenden y con qué fin? ¿Cuál es la razón de tan misteriosa cláusula?
Cancel

Pues, en respuesta a la primera pregunta, nada más y nada menos, que Impey Barbicane, el capitán Nicholl, J.T. Maston y su ferviente admiradora, la señorita Evangelina Scorbitt. Los tres primeros ya habían protagonizado dos aventuras previas salidas de la pluma de Jules Verne, De la Tierra a la Luna (1865) y su secuela Alrededor de la Luna (1869). En lo que respecta a la segunda de las cuestiones planteadas más arriba, en esta ocasión, nuestros amigos vuelven tras 20 años de ausencia con una nueva y excéntrica idea: derretir los hielos eternos que cubren el Polo Norte de nuestro planeta para explotar los yacimientos de hulla que se encuentran por debajo.

Este argumento pertenece a la novela publicada por Verne en 1889 titulada Sans dessus dessous, en el original francés. En su traducción al español ha aparecido bajo tres formas distintas: Sin arriba ni abajoEl eje de la Tierra y El secreto de Maston (la más conocida).

Por último, la solución a la enigmática tercera pregunta, constituye el nudo principal de la novela y, a medida que se avanza en su lectura, va surgiendo de forma natural. La idea de nuestros estrafalarios personajes no es otra que modificar el eje de rotación terrestre, desplazándolo algo más de 3000 kilómetros y situando el "nuevo" Polo Norte en un punto que previamente se localizase en los 55º de longitud oeste. De esta manera, los hielos polares se fundirían de forma completamente natural, dejando al descubierto una tierra fácilmente explotable en lo que a sus recursos minerales se refiere.
Cancel
Show all 2 highlights
Sort
Mapping the explosion of Cassiopeia A | Astrophysics | Mapping Ignorance

Mapping the explosion of Cassiopeia A | Astrophysics | Mapping Ignorance

mappingignorance.org
astronomía, supernovas, explosión, Casiopea
Supernovae are one of the most fascinating events in stellar astrophysics. Most stars suffer explosions at some point of their last days but the most massive ones explode releasing incredible amounts of energy and rivaling in brightness with the rest of the galaxy they live in. What they leave behind is hydrogen enriched with materials heavier than iron that cannot be produced otherwise in the Universe. From this renewed interstellar medium new stars and planets are formed again in a cycle of death and life that has been revised many times. Among supernovae, Cassiopeia A (see Figure 1) is possibly one of the most studied ones, being not only the brightest extrasolar radio source in the sky but also the youngest supernova remnant in our Galaxy. Now, a recent work 1 has provided a surprising insight on how the star exploded by mapping the distribution of a radioactive element in the remnant.
Cancel
 The work by Grefenstette and collaborators is based on a fortnight of X-ray observations using NuSTAR (NUclear Spectroscopic Telescope ARray), a space based telescope operating in the 5-80 keV range. The Cass A supernova remnant shows two emission lines associated with 44Ti which can be mapped with the astonishing capabilities of the space observatory (see Figure 2). The observed distribution of this radioactive element can be compared with the distribution of other elements such as Fe or Mg/Si that had been previously studied in other works. The distribution is clumpy and somewhat extended in the direction of a jet seen at other wavelengths. But it does not follow them exactly. In the case of the Fe distribution this is particularly intriguing since it had been thought that 44Ti is produced in the same processes as 56Ni, which later decays into 56Co and lately to 56Fe 2. This seems not to be the case. Analyzing the distribution of Titanium and comparing with the age and expansion velocity of the supernova, it turns out that this element is contained in the unshocked interior of the supernova. This means that we are indeed mapping the shape of the star before the explosion by mapping Titanium.
Cancel
Show all 2 highlights
Sort
Anillos en Cariclo y un nuevo objeto en la nube de Oort interior - La Ciencia de la Mula Francis

Anillos en Cariclo y un nuevo objeto en la nube de Oort interior - La Ciencia de la Mula Francis

francis.naukas.com
astronomía, nube de Oort, asteroides, anillos

odos los planetas gaseosos del Sistema Solar tienen un sistema de anillos (Júpiter, Saturno, Urano y Neptuno). ¿Puede tener un asteroide un anillo? Nada lo prohíbe. Investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) colaboran en un artículo publicado en Nature que demuestra que Cariclo, objeto Centauro (10199), con un diámetro de apenas 250 km, presenta dos anillos densos formados por hielo de agua. El descubrimiento se ha realizado gracias a una ocultación de Cariclo (su paso por delante de una estrella). Todo indica que los anillos son un fenómeno mucho más común de lo que pensábamos.

El artículo técnico es F. Braga-Ribas et al., “A ring system detected around the Centaur (10199) Chariklo,” Nature, AOP 26 Mar 2014; Joseph A. Burns, “Solar System: Ring in the new,” Nature, AOP 26 Mar 2014. En español puedes leer IAA (CSIC), “Cariclo, el primer objeto con anillos que no es un planeta,” Agencia SINC, 26 Mar 2014, y Antonio Martínez Ron, “Descubren el primer asteroide con un sistema de anillos,” Next, 26 Mar 2014.

Cancel
Sort
Origin of Metals in the Universe --A Key Factor in the Creation and Evolution of Primitive Cells

Origin of Metals in the Universe --A Key Factor in the Creation and Evolution of Primitive Cells

www.dailygalaxy.com
metales, universo, astronomía


It has been known that many hot white dwarfs atmospheres, essentially of pure hydrogen or pure helium, are contaminated by other elements – like carbon, silicon and iron. What was not known, however, was the origins of these elements, known in astronomical terms as metals.

This decades old space mystery has been solved by an international team of astronomers led by Professor Martin Barstow of the University of Leicester and President-elect of the Royal Astronomical Society. Scientists from Leicester and University of Arizona investigated hot, young, white dwarfs — the super-dense remains of Sun-like stars that ran out of fuel and collapsed to about the size of the Earth. Their research is featured in MNRAS- the Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.

"The precise origin of the metals has remained a mystery and extreme differences in their abundance between stars could not be explained," said Professor Barstow, a Pro-Vice-Chancellor at the University of Leicester whose research was assisted by his daughter Jo, a co-author of the paper, during a summer work placement in Leicester. She has now gone on to be an astronomer working in Oxford - on extra-solar planets.

"It was believed that this material was "levitated" by the intense radiation from deeper layers in the star," said Professor Barstow. Now the researchers have discovered that many of the stars show signs of contamination by rocky material, the left overs from a planetary system.

Cancel

The researchers surveyed 89 white dwarfs, using the Far Ultraviolet Spectroscopic Explorer to obtain their spectra (dispersing the light by color) in which the "fingerprints" of carbon, silicon, phosphorous and sulphur can be seen, when these elements are present in the atmosphere. They found that in stars with polluted atmospheres the ratio of silicon to carbon matched that seen in rocky material, much higher than found in stars or interstellar gas.

White Dwarf Type Ia supernovae are brighter than whole galaxies and visible billions of light-years away (see image at top of page).

The new work indicates that at around a one-third of all hot white dwarfs are contaminated in this way, with the debris most likely in the form of rocky minor planet analogues. This implies that a similar proportion of stars like our Sun, as well as stars that are a little more massive like Vega and Fomalhaut, build systems containing terrestrial planets. This work is a form of celestial archaeology where we are studying the 'ruins' of rocky planets and/or their building blocks, following the demise of the main star.

Cancel
Show all 2 highlights
Sort
Dwarf planet stretches Solar System's edge

Dwarf planet stretches Solar System's edge

www.nature.com
astronomía, planeta, sistema solar
The Solar System just got a lot more far-flung. Astronomers have discovered1 a probable dwarf planet that orbits the Sun far beyond Pluto, in the most distant trajectory known.
Cancel

Together with Sedna, a similar extreme object discovered a decade ago2, the find is reshaping ideas about how the Solar System came to be. “It goes to show that there’s something we don’t know about our Solar System, and it’s something important,” says co-discoverer Chad Trujillo, an astronomer at Gemini Observatory in Hilo, Hawaii. “We’re starting to get a taste of what’s out beyond what we consider the edge.”

Trujillo and Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington DC, report the finding today in Nature.

“This is a great discovery,” says Michael Brown, a planetary astronomer at the California Institute of Technology in Pasadena. “We’ve been searching for more objects like Sedna for more than 10 years now.” Finding another one like it reduces the chances that Sedna is a fluke, he says. But astronomers now have to come up with ideas to explain how these objects remain tightly gravitationally bound to the Sun when they orbit so far away.

Cancel
Show all 2 highlights
Sort
"The Pulse of the Milky Way" --NASA's New Interactive 360-Degree Infrared Image of Our Galaxy

"The Pulse of the Milky Way" --NASA's New Interactive 360-Degree Infrared Image of Our Galaxy

www.dailygalaxy.com
astronomía, Vía Láctea, imagen interactiva

The new infrared picture, known as GLIMPSE360, was compiled by a team led by UW-Madison astronomer Barb Whitney. It is interactive and zoomable, giving users the ability to look through the plane of the galaxy and zero in on a variety of objects, including nebulae, bubbles, jets, bow shocks, the center of the galaxy and other exotic phenomena. The image is being shown for the first time this morning on a large visualization wall installed by Microsoft at the TED conference.

"If we actually printed this out, we'd need a billboard as big as the Rose Bowl Stadium to display it," said Robert Hurt, an imaging specialist at NASA's Spitzer Space Science Center in Pasadena, Calif. "Instead, we've created a digital viewer that anyone, even astronomers, can use."

Using more than 2 million images collected by NASA's orbiting Spitzer Space Telescope, a team of Wisconsin scientists has stitched together a dramatic 360 degree portrait of the Milky Way, providing new details of our galaxy's structure and contents.

The new composite picture, using infrared images gathered over the last decade, was unveiled today (March 20, 2014) at a TED conference in Vancouver. The galactic portrait provides an unprecedented look at the plane of our galaxy, using the infrared imagers aboard Spitzer to cut through the interstellar dust that obscures the view in visible light.

Cancel

"For the first time, we can actually measure the large-scale structure of the galaxy using stars rather than gas," explains Edward Churchwell, a University of Wisconsin-Madison professor of astronomy whose group compiled the new picture, which looks at a thin slice of the galactic plane. "We've established beyond the shadow of a doubt that our galaxy has a large bar structure that extends halfway out to the sun's orbit. We know more about where the Milky Way's spiral arms are."

Lofted into space in 2003, the Spitzer Space Telescope has far exceeded its planned two-and-a-half-year lifespan. Although limited by the depletion of the liquid helium used to cool its cameras, the telescope remains in heliocentric orbit, gathering a trove of astrophysical data that promises to occupy a new generation of astronomers.

In addition to providing new revelations about galactic structure, the telescope and the images processed by the Wisconsin team have made possible the addition of more than 200 million new objects to the catalog of the Milky Way.

Cancel
Show all 2 highlights
Sort
¿El primer contacto? ¡Tendrá que esperar! : Blog de Emilio Silvera V.

¿El primer contacto? ¡Tendrá que esperar! : Blog de Emilio Silvera V.

www.emiliosilveravazquez.com
Proyecto Ozma, vida extraterrestre, Frank Drake, astronomía

Como en el Univeso, también los gustos cambian y van por épocas

En temas científicos controvertidos de los que se tienen pocos empíricos, las opciones cambian constantemente, como si de la moda femenina se tratara. La falda se lleva larga durante una década y, ahora cambianmos a la falda corta, muy corta para las más jovencitas y, de esa manera se va de arriba abajo. De la misma manera pasa con los temas científicos cuando no se tienen nociones certeras sobre ellos y, hubo un tiempo en el que se creía que los planetas eran raros en el Universo. Para ello, los cientíicos se basaban en que la Tierra era el fruto de una colisión improbable o un acercamiento excesivo entre dos soles.

Cuando no se sabe, se especula y se emiten teorías que no siempre son las más acertadas. Con toda probabilidad (creían), la vida en el Cosmos estaba supeditada a nuestro solar, tal vez solamente a la Tierra -cosa que aún hoy, creen algunos “científicos” de poocas luces-. Sin embargo, las opiniones más autorizadas, se han decantado hacia el extremo contrario, es decir, que la vida, prolifera por el Cosmos al igual que los planetas, las estrellas y las galaxias.

Cancel
Ahora sabemos que los planetas son comunes y su presencia alrededor de las estrellas es de lo más corriente y natural en el proceso de de los astros y los diversos objetos que los orbitan. Los planetas proliferan tanto y son tan comunes que se exhiben a  miles de millones -solamente en nuestra propia galaxia- alrededor de sus estrellas rutilantes que les envía luz y calor para que, en aquellos que tengan las precisas condiciones, pueda surgir alguna clase de vida y, en algunos casos, alcanzaran la consciencia como lo hicimos aquí en la Tierra.
Cancel
Show all 2 highlights
Sort
Las galaxias y la Vida… ¡Crean entropía negativa! : Blog de Emilio Silvera V.

Las galaxias y la Vida… ¡Crean entropía negativa! : Blog de Emilio Silvera V.

www.emiliosilveravazquez.com
galaxias, entropía, vida, astronomía

                      Las cosas que podemos encontrar en el espacio interestelar nos pueden sorprender

                                     La vida es un signo de entropía negativa se replica

Cancel
Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida multiforme, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.
Cancel

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Ahora, parece que han recapacitado y han enviado a Marte y otros lugares de nuestro entorno, una pléyade de ingenios que ya nos han enviado e imágenes de cómo son otros mundos y de las posibilidades que en ellos pueden existir de que la vida esté presente. De momento han encontrado hielo de agua, han diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.  En algunos lugares, como Titán, por ejemplo,  hay más que evidencia de agua porque las sales están allí con otros elementos esperanzadores y una atmósfera prometedora. Además han encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de estos lugares (también Marte) es que no son un mundos extraños, sino que, en muchos aspectos, son iguales que la Tierra fue en el pasado o podrá ser en el futuro. Por eso es importante que los estudiémos

Cancel
Show all 3 highlights
Sort
Vamos imparables…, ¡hacia el futuro!, o, ¿hacia nuestro final? : Blog de Emilio Silvera V.

Vamos imparables…, ¡hacia el futuro!, o, ¿hacia nuestro final? : Blog de Emilio Silvera V.

www.emiliosilveravazquez.com
universo, exploración espacial, futuro, astronomía

Lo que no sabemos es qué clase de futuro es ese hacia el que nos encaminamos. La Humanidad, aún en proceso de humanización, para su evolución intelectual necesita otro salto cuantitativo y cualitativo del conocimiento que le permita avanzar notablemente hacia eso que llaman futuro. Ese avance está supeditado a que surjan nuevas teorías, nuevos paradigmas de la física que nos lleven más lejos de lo que podemos llegar, por falta del conocimiento de lo que la naturaleza es. De hecho, aunque muchos sabios nos lo han recomendado, por no conocer, ni nos conocemos a nosotros mismos. ¡La Humanidad! Que teniéndola tan cerca, nos resulta tan extraña a veces.

Cancel
Loading...